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Abstract: Gravity in five-dimensional braneworld backgrounds often exhibits problematic

features, including kinetic ghosts, strong coupling, and the vDVZ discontinuity. These

problems are an obstacle to producing and analyzing braneworld models with interesting

and potentially observable modifications of 4d gravity. We examine these problems in a

general AdS5/AdS4 setup with two branes and localized curvature from arbitrary brane

kinetic terms. We use the interval approach and an explicit “straight” gauge-fixing. We

compute the complete quadratic gauge-fixed effective 4d action, as well as the leading

cubic order corrections. We compute the exact Green’s function for gravity as seen on

the brane. In the full parameter space, we exhibit the regions which avoid kinetic ghosts

and tachyons. We give a general formula for the strong coupling scale, i.e. the energy

scale at which the linearized treatment of gravity breaks down, for relevant regions of the

parameter space. We show how the vDVZ discontinuity can be naturally but nontrivially

avoided by ultralight graviton modes. We present a direct comparison of warping versus

localized curvature in terms of their effects on graviton mode couplings. We exhibit the

first example of DGP-like crossover behavior in a general warped setup.
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1. Introduction

Gravity in five-dimensional braneworld backgrounds exhibits features which, from a 4d

point of view, are both novel and surprising. Examples include:

• Kaluza-Klein (KK) graviton modes whose couplings to brane matter are only TeV

suppressed [1], and thus potentially detectable as resonances at the LHC [2]–[4].

• Extra 4d scalar modes (radions) whose couplings to brane matter are TeV suppressed

but otherwise like those of gravity [5]–[12].

• Continuum KK graviton modes which are potentially detectable at the LHC [13],[14].

• KK graviton modes whose couplings to brane matter are suppressed by warping

[15],[16].

• KK graviton modes whose couplings to brane matter are suppressed by localized

curvature (i.e. brane kinetic terms for gravity) [17].

• 4d effective theories with no massless graviton [16],[17].

• 4d effective theories with a massless graviton and an additional ultralight KK gravi-

ton, whose mass goes to zero in a well-defined parametric limit [18]–[19].

• A crossover scale, such that KK gravitons with mass below this scale have unsup-

pessed couplings to brane matter, but heavier KK modes have suppressed couplings.

This leads to modifications of 4d gravity which appear in the infrared rather than the

ultraviolet [17],[20]–[22]. Such “DGP” scenarios could have relevance to cosmology

[23]–[25].

What is truely remarkable is that these novel features of gravity do not require the

assumption of any new physics beyond a single extra dimension and the existence of co-

dimension one branes. The above results are derived in low energy linearized effective

descriptions which require no assumptions about quantum gravity, string theory, or the

existence of exotic matter.

Before we celebrate too loudly, however, we should confront a number of troubling

issues common to most or all braneworld gravity models:

• Are these low energy effective descriptions really just special cases of 5d General

Relativity? This is not obvious since most models invoke orbifold backgrounds, and

since they also ignore the problem of ultraviolet matching to e.g. the microscopic

features of the branes.

• What are the physical degrees of freedom in these various models? This is a difficult

question to answer rigorously, since the usual gauge-fixing choices (e.g. harmonic

gauge) are not suitable for setups with more than one brane.
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• Are these models stable? Models with massless radions are at best marginally stable.

Some simple setups [26]–[29] have radions which are kinetic ghosts, i.e. their kinetic

terms have the wrong sign. Kinetic ghosts indicate an instability in the model. As

we will see in this paper, graviton modes can also be kinetic ghosts, and some kinetic

ghosts are also tachyons. Although kinetic ghosts may be useful for some purposes

[30]–[33], their presence cannot safely be ignored.

• Under what conditions do ultralight graviton modes mimic 4d gravity, avoiding the

famous vDVZ discontinuity [34]?

• At what scale does the low energy linearized approximation break down? Perturba-

tion theory involves more input parameters than just the 5d gravitational coupling

M ; it would not be surprising if in certain limits of these additional parameters the

low energy effective theory breaks down at a scale much lower than M . Indeed this is

precisely what happens in the simplest models containing ultralight graviton modes

or crossover behavior, where strong coupling sets in at a scale parametrically much

smaller than M .

In a recent investigation [35] three of us resolved the first two issues listed above.

We recast the standard braneworld models in the “interval picture”, where orbifolding is

replaced by intervals with boundaries. We showed that braneworld gravity has a well-

defined action principle only if we extend General Relativity to include “brane-boundary

equations” which supplement the usual bulk Einstein equations. We also showed how to

rigorously extract the physical degrees of freedom, by introducing a class of “straight”

gauges suitable for braneworld analysis.

The purpose of this paper is to address the remaining three issues listed above, and

thus to revamp the promising field of braneworld gravity. In section 2 we derive the general

4d quadratic effective action for a general setup with two branes, including warping and

localized curvature. This action is gauge-fixed to just the physical degrees of freedom, using

a straight gauge. In section 3 we use this effective action to demonstrate the presence

or absence of kinetic ghosts and/or tachyons according to various choices of the input

parameters. This analysis is a generalization and improvement of earlier attempts [36],

[37]. We find that both the radion and the graviton zero mode can be kinetic ghosts in

certain regions of the parameter space.

In section 4 we address the question of strong coupling. By computing the relevant part

of the 4d cubic effective action, we give a general formula to determine the strong coupling

scale for the radion. We show that the strong coupling scale becomes small in a DGP-like

limit. In section 5 we give an exact expression for the straight gauge graviton Green’s

function on the brane. This allows us to show how the vDVZ discontinuity is avoided in

warped models with ultralight graviton modes. In a DGP-like limit, our straight gauge

graviton Green’s function does not have any diverging tensor structures such as those that
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appear in DGP; the potential breakdown of linearized gravity in this limit is entirely due

to the radion.

Finally, in section 6 we use the exact Green’s function to study the couplings of KK

gravitons to brane matter. In the special case of the Karch-Randall setup, we regain

the recent results of Kaloper and Sorbo [38]. We focus on models with an infinite extra

dimension and no massless graviton. Localized curvature and warping both have the effect

of making an ultralight graviton from the first massive KK mode. We compare these two

effects in our models, and show that the warping effect is more efficient than localized

curvature in creating a simulacrum of 4d gravity.

In section 6 we exhibit explict crossover behavior for models in our general setup. In

these models the couplings of the KK graviton modes to brane matter are unsuppressed

up to a mass scale 1/rc, and are highly suppressed for modes heavier than this scale. This

behavior is the most interesting phenomenological feature of DGP braneworld gravity; here

we can study it in a general warped framework.

2. The 4d quadratic effective action

In [35], a brane world gravity theory with the action

S =

∫

d4x

(

∫ L−

0+

dy +

∫ 0−

−L+

dy

)

√
−G
(

2M3R− Λ
)

+
∑

i

∫

y=yi

d4x

√

−g(i)(2M2
i R̃(i) − Vi) + 4M3

∮

∂M
K . (2.1)

was analyzed. This action represents a general warped gravity setup with codimension one

branes, written in the interval picture. In (2.1) M is the 5d Planck scale, Λ = −24M3k2

is the bulk cosmological constant giving a bulk curvature k, the Mi are the coefficients of

brane-localized curvatures R̃(i), the Vi are brane tensions, and K is the extrinsic curvature

of the Gibbons-Hawking boundary term.

Upon linearization, GMN = G0

MN + hMN , the AdS5/AdS4 background solution is

G0

MN =

(

g0µν 0

0 1

)

, (2.2)

where

g0µν =
a(y)2

(1 − H2x2

4 )2
ηµν , (2.3)

with

a(y) =
cosh k(y − y0)

cosh ky0
, 0 < y < L , (2.4)

ηµν = diag(−1, 1, 1, 1) and x2 = ηµνx
µxν . Hereafter, we will omit the superscript 0.
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Figure 1: The unshaded area is where −1 < T+
i < 1. On the boundary, the curved lines are

described by wi = −6vi − 6
vi

, and the straight lines are wi = ±12.

It is extremely convenient to trade Mi and Vi for dimensionless input parameters vi

and wi defined by

vi = kM2
i /M

3 , wi = Vi/2kM
3 . (2.5)

The brane separation L and the warping parameter y0 are then determined from these

inputs by the relations

Ti =
wi
12

+
vi
2

(1 − T 2
i ) , (2.6)

or

T±
i =

1

vi

(

− 1 ±
√

1 +
1

6
wivi + v2

i

)

, (2.7)

with

T0 = tanh ky0 , TL = tanh k(L− y0) . (2.8)

The AdS4 inverse radius of curvature H is given by

H =
k

cosh ky0
. (2.9)

Solving −1 < T+
i < 1, Figure 1 shows the range of input parameters which gives AdS5/AdS4

backgrounds.

Using this background solution, we eliminate gauge degrees of freedom and find the

following 4d physical degrees of freedom:
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1. At the massive level, we have a KK tower of massive spin-2 particles with 5 degrees

of freedom each. We can decompose the graviton explicitly into this tower of massive

modes:

hµν =
∑

q

b(q)µν =
∑

q

Y(q)(y)B(q)
µν (x) , (2.10)

where q labels the mass, q = m2/H2, and

Y(q)(y) = P−2
(−1+

√
9+4q)/2

(z) − a
(q)
0

b
(q)
0

Q2
(−1+

√
9+4q)/2(z)

= P−2
(−1+

√
9+4q)/2

(z) − a
(q)
L

b
(q)
L

Q2
(−1+

√
9+4q)/2(z) ; (2.11)

here z = tanh k(y − y0) and the P ’s and Q’s are associated Legendre functions. The

mass spectrum of modes is determined by solving the determinant equation,

a0bL − aLb0 = 0 , (2.12)

with

a0 = {v0q(1 − T 2
0 ) + (3 +

√

9 + 4q)T0}P−2
(−1+

√
9+4q)/2

(−T0)

+(−5 +
√

9 + 4q)P−2
(−3+

√
9+4q)/2

(−T0)

=
√

1 − T 2
0 {v0q

√

1 − T 2
0 P

−2
(−1+

√
9+4q)/2

(−T0) − 2P−1
(−1+

√
9+4q)/2

(−T0)} ,

b0 = q
√

1 − T 2
0 {v0

√

1 − T 2
0 Q

2
(−1+

√
9+4q)/2(−T0) + 2Q1

(−1+
√

9+4q)/2(−T0)} ,(2.13)

aL =
√

1 − T 2
L{vLq

√

1 − T 2
L P

−2
(−1+

√
9+4q)/2

(TL) + 2P−1
(−1+

√
9+4q)/2

(TL)} ,

bL = q
√

1 − T 2
L {vL

√

1 − T 2
LQ

2
(−1+

√
9+4q)/2(TL) − 2Q1

(−1+
√

9+4q)/2(TL)} .

2. At the massless level, there is a massless spin-2 particle (graviton) βµν with 2 degrees

of freedom and a 4d scalar (radion) ψ(x). Thus hµν is

hµν = βµν + a2Y1(y)∇̃µ∇̃νψ + gµνY2(y)ψ . (2.14)

The y-dependence of βµν is determined to be

βµν = a2(y)Bµν(x) . (2.15)

The remaining y-dependence is in the Yi’s, which are given by

Y1(y) = c(1 − z)2 + dz − F , Y2(y) = −H2c(1 − z)2 −H2dz +
a′

a
F , (2.16)
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where

c =
k

H2

F(L) −F(0)

α0 − αL
, (2.17)

d =
k

H2

α0F(L) − αLF(0)

α0 − αL
, (2.18)

with

αi =
2(1 − θiTi) − θikλi(1 − θiTi)

2

1 + kλiTi
, (2.19)

where we have borrowed a notation from [35]: θ0 = −1, θL = +1. The above formulas

show a residual gauge freedom parametrized by a single real function F (y), such that

F ′(y) = F (y) and F′(y) = F/a2(y).

Using the background solutions, we can expand the action (2.1) up to the second order

in an arbitrary metric fluctuation hMN . The bulk part becomes

2

∫

d4x

∫ L

0
dy

√−g
(

− 8k2 + k2h2 +
1

2
RMPNQh

MNhPQ

−1

4
∇Ph

MN∇PhMN +
1

4
∇Mh∇Mh− 1

2
∇Mh∇Nh

MN +
1

2
∇Mh

MN∇Ph
P
N

+∇M(∇Nh
MN −∇Mh− 3

2
hMN∇PhPN − 1

2
hPN∇Ph

M
N

+hMN∇Nh+
1

2
h∇Nh

MN + hPN∇MhPN − 1

2
h∇Mh)

)

, (2.20)

the brane part is, with 4d total divergence terms dropped,

∑

i

∫

d4x
[√−g

(

− 12λiH
2

a2
− Ui −

(3λiH
2

a2
+
Ui
2

)

h̃

+λi(−
1

4
∇̃ρh

µν∇̃ρhµν +
1

4
∇̃µh̃∇̃µh̃− 1

2
∇̃µh̃∇̃νh

µν +
1

2
∇̃µh

µν∇̃ρh
ρ
ν)

+
(2λiH

2

a2
+
Ui
4

)

hµνhµν −
(λiH

2

2a2
+
Ui
8

)

h̃2
)]

y=yi

, (2.21)

and the extrinsic curvature part turns into

2

∫

d4x
[√−g

(8a′

a
+ h̃′ +

4a′

a
h̃− 4a′

a
h44

+
1

4
h̃2′ +

a′

a
h̃2 − hµνh′µν −

2a′

a
h̃h44 −

1

2
h̃′h44 +

3a′

a
h2

44

)]y=L

y=0
. (2.22)

A tilde indicates that the corresponding entity is a 4d quantity constructed with gµν . Note

that there are 5d-total derivative terms in the bulk part. Due to the finiteness of the 5th

dimension, they do not vanish identically but make contribution to the brane-boundary

part of the action.

Expanding further the bulk part, with the help of

∇µT
ν = ∇̃µT

ν +
a′

a
δνµT

4 , ∇µT
4 = ∇̃µT

4 − a′

a
Tµ , (2.23)
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and imposing the partial gauge choice hµ4 = 0, (2.20)+(2.21) +(2.22) becomes

S

2M3
= 2

∫

d4x

∫ L

0
dy

√−g
(

− 8k2 − 1

2
hµν∇̃µ∇̃ρh

ρ
ν −

1

4
h̃∇̃2h̃

+
1

4
hµν∇̃2hµν +

1

2
hµν∇̃µ∇̃ν h̃− 1

2
h̃∇̃2h44 +

1

2
h44∇̃µ∇̃νh

µν

−1

4
hµν ′hµν

′ +
H2 − 2a′2

2a2
hµνhµν +

k2a2 + a′2

2a2
h̃2 +

h̃′2

4
+
a′

4a
h̃2′

+
a′

a
h2

44
′ +

k2a2 + 6a′2

a2
h2

44 −
a′

2a
h̃h44

′ − 2a′

a
h̃′h44 +

k2a2 − 3a′2

a2
h̃h44

)

+
∑

i

∫

d4x
[√−g

(

− 4λiH
2

a2
+
Ui
3

+λi(−
1

2
hµν∇̃µ∇̃ρh

ρ
ν −

1

4
h̃∇̃2h̃+

1

4
hµν∇̃2hµν +

1

2
hµν∇̃µ∇̃ν h̃)

+
λiH

2

2a2
hµνhµν −

Ui
24
h̃2 − 2kTih

2
44 + kTih̃h44

)]

y=yi

. (2.24)

Note that all the terms linear in h get cancelled, as they should be.

To get a simpler form, we remove y-derivatives on the fields whenever it’s possible.

For example,

√−g a
′

4a
h̃2′ =

( a3a′

4(1 − H2x2

4 )4
h̃2
)′

− h̃2

4(1 − H2x2

4 )4
(3a2a′2 + a3a′′)

=
(√−g a

′

4a
h̃2
)′

−√−g 3a′2 + k2a2

4a2
h̃2 , (2.25)

where the first term contributes to the brane-boundary part of the action. This way, we

eliminate h̃2′, h2
44

′ and h̃h′44–terms from the bulk part of the action, to get

S

2M3
= 2

∫

d4x

∫ L

0
dy

√−g
(

− 8k2 +
H2 − 2a′2

2a2
hµνhµν +

H2

4a2
h̃2

−1

2
hµν∇̃µ∇̃ρh

ρ
ν −

1

4
h̃∇̃2h̃+

1

4
hµν∇̃2hµν +

1

2
hµν∇̃µ∇̃ν h̃

−1

4
hµν ′hµν

′ +
h̃′2

4
− 1

2
h̃∇̃2h44 +

1

2
h44∇̃µ∇̃νh

µν

+
3a′2

a2
h2

44 −
3a′

2a
h̃′h44 +

3H2

2a2
h̃h44

)

+
∑

i

∫

d4x
[√−g

(

− 4λiH
2

a2
+
Ui
3

+
λiH

2

2a2
hµνhµν +

λiH
2

4a2
h̃2

+λi(−
1

2
hµν∇̃µ∇̃ρh

ρ
ν −

1

4
h̃∇̃2h̃

+
1

4
hµν∇̃2hµν +

1

2
hµν∇̃µ∇̃ν h̃)

)]

y=yi

. (2.26)

Plugging (2.10) and (2.14), we finally obtain

S

2M3
=

S

2M3

∣

∣

∣

Λ
+

S

2M3

∣

∣

∣

massive
+

S

2M3

∣

∣

∣

massless
, (2.27)
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where

S

2M3

∣

∣

∣

Λ
= −16k2

∫

d4x
√

−ĝ
∫ L

0
dy a4 +

∑

i

∫

d4x
√

−ĝ
[

a4
(

− 4λiH
2

a2
+
Ui
3

)]

y=yi

= −6H2C(0)
g , (2.28)

S

2M3

∣

∣

∣

massive
= 2

∑

q>0

∫

d4x

∫ L

0
dy

√−g
(1

4
b(q)µν∇̃2b(q)µν − 1

4
b(q)µν ′b(q)µν

′ +
H2 − 2a′2

2a2
b(q)µνb(q)µν

)

+
∑

q>0

∑

i

∫

d4x
[√−g

(λi
4
b(q)µν∇̃2b(q)µν +

λiH
2

2a2
b(q)µνb(q)µν

)]

y=yi

=
∑

q>0

C(q)
g

∫

d4x
√

−ĝ
(1

4
B(q)µ̂ν̂∇̂2B(q)

µν +
H2

2
B(q)µ̂ν̂B(q)

µν − m(q)2

4
B(q)µ̂ν̂B(q)

µν

)

, (2.29)

and

S

2M3

∣

∣

∣

massless
= 2

∫

d4x

∫ L

0
dy

√−g
(1

4
βµν∇̃2βµν −

1

4
βµν ′βµν

′ +
H2 − 2a′2

2a2
βµνβµν

)

+
∑

i

∫

d4x
[√−g

(λi
4
βµν∇̃2βµν +

λiH
2

2a2
βµνβµν

)]

y=yi

+2

∫

d4x

∫ L

0
dy

√−g
(

− 3

2
Y2

2 − 3

4
H2a2Y ′

1
2 − 3

2
FY2

)

ψD4ψ

+
∑

i

∫

d4x
[√−g

(

− 3λi
2

Y2
2

)

ψD4ψ
]

y=yi

= C(0)
g

∫

d4x
√

−ĝ
(1

4
Bµ̂ν̂∇̂2Bµν +

H2

2
Bµ̂ν̂Bµν

)

+ Cψ
∫

d4x
√

−ĝ ψD̂4ψ , (2.30)

with

C(0)
g =

1 − T 2
0

k

∑

i

(

tanh−1 Ti +
Ti + kλi
1 − T 2

i

)

, (2.31)

C(q)
g =

k

H2

(

2

∫ TL

−T0

Y(q)2dz +
∑

i

[vi(1 − z2)Y(q)2]y=yi

)

, (2.32)

m(q)2 = H2

∫ TL

−T0

{∂z((1−z2)Y(q))}2

1−z2 dz
∫ TL

−T0
Y(q)2dz +

∑

i
vi
2 [(1 − z2)Y(q)2]y=yi

, (2.33)

Cψ = −
∫ L

0
dy a2

(

3Y2
2 +

3

2
H2a2Y ′

1
2 + 3FY2

)

−
∑

i

[3λi
2
a2Y2

2

]

y=yi

. (2.34)

A hatted entity is defined using the metric without a warp factor. If we include a source

term in the action, its coupling to a specific graviton mode will show up like

S(q) = 2M3C(q)
g

∫

d4x
√

−ĝ 1

4
B(q)µ̂ν̂∇̂2B(q)

µν + · · · +
∫

d4xdy
√−g h(q)

µν T
µν

=

∫

d4x
√

−ĝ 1

4
B̄(q)µ̂ν̂∇̂2B̄(q)

µν + · · · +
∫

d4xdy
√−g Y(q)(y)

√

2M3C(q)
g

B̄(q)
µν T

µν , (2.35)
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and then we can read off the gravitational coupling constant. In particular, on the 0-brane,

1

M
(q)
4

=
Y(q)(0)
√

2M3C(q)
g

. (2.36)

3. Avoiding ghosts and tachyons

3.1 ghostbusting

It has been known for some time that brane setups of the type that we are considering are

sometimes afflicted with unphysical features. Kinetic ghosts, by which we mean wrong-sign

kinetic terms for physical modes in the 4d effective action, are indicative of an instability,

similar to the case of their cousin the tachyon. Regions of our input parameter space

which produce kinetic ghosts are certainly to be avoided if we are interested in static brane

configurations. A kinetic ghost radion can occur for setups with e.g., v0 = vL = 0 and

w0 + wL < 0. Intuitively we also expect a kinetic ghost graviton to occur in cases where

v0 and vL become too negative, i.e. we have too much wrong-sign localized curvature. As

we will see, the full story is quite complicated.

The boundary between a region of the input parameter space which has a kinetic ghost,

and a region which does not, defines a class of models where the coefficient of the kinetic

term of a physical mode is vanishing. After a canonical rescaling of the field, this implies

strong coupling once we go beyond the linearized theory. Such regions of strong coupling

are to be avoided if we want the 4d effective low energy theory to be valid up to energy

scales approaching k.

In this section we will map out the input parameter space and identify the region which

avoids both kinetic ghosts and strong coupling.

We have already noted that the massless mode of the graviton may be a ghost. When

we choose (v0, w0) such that T0 > 0, Figure 2 and 3 show how C̄(0)
g ≡ kC(0)

g /(1− T 2
0 ) varies

as a function of (vL, wL). C̄(0)
g is zero along each line shown in Figure 2 and 3, positive

above it and negative below it. As T0 approaches 1 either by v0 → +∞ or by w0 → +12,

C̄(0)
g = 0 line moves to the left.

We can play a similar game with the coefficient, Cψ, of the radion. Equation (2.34)

holds irrespective of gauge choice of F (y). Then, in a generic case where α0 − αL 6= 0, for

simplicity we can choose

F(y) = χ
( y

L
(αL − α0) + α0

)

, (3.1)

where χ is a remaining real gauge parameter that we leave arbitrary as a check of general

covariance for physical results. With this choice we get

c = − 1

H2
, d = 0 . (3.2)
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Figure 2: The C̄(0)
g = 0 on (vL, wL)-plane when v0 = 0.3 and w0 = 10, 5,−5,−10 for the lines from

left to right respectively.
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Figure 3: The C̄(0)
g = 0 on (vL, wL)-plane when w0 = 5 and v0 = 1.5, 0.5,−0.5,−1 for the lines

from left to right respectively.

Then, (2.34) becomes

Cψ =
3χ2H2

k

∑

i

[

− 1

2
(θi + viz)αi

( z

1 − z2
αi + 2

1 − z

1 + z

)

+
(

θi −
1 − z

2
vi

)(1 − z)2

1 + z

]

z=θiTi

=
3χ2H2

2k

∑

i

(−θi + Ti)(2 − θivi + viTi)

1 + viTi
. (3.3)

– 11 –



v
L

w
L

-15

-10

-5

 0

 5

 10

 15

-2 -1  0  1  2

Figure 4: The C̄ψ = 0 on (vL, wL)-plane when v0 = 0.3 and w0 = 10, 5,−5,−10 for the lines from

left to right respectively.
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Figure 5: The C̄ψ = 0 on (vL, wL)-plane when w0 = 5 and v0 = 1.5, 0.5,−0.5,−1 for the lines from

left to right respectively.

Figures 4 and 5 show that, if we choose (v0, w0) such that T0 > 0, then C̄ψ ≡ 2kCψ/3χ2H2

is positive above each line. Also, the closer T0 is to +1, the more convex to the left C̄ψ = 0

line gets.
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3.2 tachyons

Equation (2.12) determines the KK mass spectrum of the graviton. For some range of

values of the input parameters, it can have a zero at negative q, i.e. negative mass-

squared. For example, if we choose v0 = 5, w0 = 3, vL = −7, wL = 9, then (2.12) has a

solution q = −0.94.

We will refer to such solutions as tachyons. The tachyons with −9/4 < q < 0 obey the

Breitenlohner-Freedman bound [39], and as expected we will find (see section 5.1) that the

Euclidean Green’s function for such modes has the same exponentially damped asymptotics

as for ordinary massive modes. The tachyons with q < −9/4 have oscillatory asymptotics,

similar to tachyons in flat space. It turns out that some of the tachyonic solutions also

have wrong-sign kinetic terms.

We can expose the tachyonic solutions by analyzing the quantity

D ≡ a0bL − b0aL
q(1 − T 2

0 )(1 − T 2
L)
. (3.4)

Note that D takes some finite value at q = 0, proportional to the residue of the pole from

the massless graviton mode. Now we can compare the two quantities

D|q=0 , D|q→−∞ . (3.5)

Suppose we find values for the input parameters such that there are no tachyons in the KK

graviton spectrum. Then it must be the case that

D|q=0 × D|q→−∞ > 0 . (3.6)

As we vary the input parameters, we may cross the hypersurface in the parameter space

defined by D|q=0 ×D|q→−∞ = 0. Just across this boundary are models which each contain

a single tachyon. To find this boundary between models with no tachyon and models with

a single tachyon, we need explicit expressions for D|q=0 and D|q→−∞.

D|q=0 can be worked out straightforwardly:

D|q=0 = −2
∑

i

(1

2
log

1 + Ti
1 − Ti

+
Ti + vi
1 − T 2

i

)

= −2C̄(0)
g , (3.7)

where we used tanh−1 x = 1
2 log 1+x

1−x .

Before trying to evaluate D|q→−∞, note that our solutions of the equations of motion

should be real. While P−2
(−1+

√
9+4q)/2

(z) is always real, Q2
(−1+

√
9+4q)/2

(z) becomes a complex

valued function for q < −9/4. Thus for q > −9/4 we still write (2.11) in the form

Y(q)(y) = AP−2
(−1+

√
9+4q)/2

(z) +BQ2
(−1+

√
9+4q)/2(z) , (3.8)

but for q < −9/4 we use relation 8.843 of [40] and relations 3.6.1(4)-(5), 3.3.1(7) of [41] to

write the real solution

Y(q)(y) = AP−2
ip−1/2(z) +B

π

2 cosh πp
(p2 +

9

4
)(p2 +

1

4
)P−2

ip−1/2(−z) , (3.9)
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where we have defined 2ip =
√

9 + 4q. The two expressions match at p = 0, q = −9/4.

Plugging (3.9) into the brane-boundary equations of motion, we obtain a0, b0, aL, bL

which are real for any large and negative q, i.e., large and positive p:

a0 =
√

1 − T 2
0

{

− v0(p
2 +

9

4
)
√

1 − T 2
0 P

−2
ip−1/2(−T0) − 2P−1

ip−1/2(−T0)
}

,

b0 =
√

1 − T 2
0

{

− v0(p
2 +

9

4
)
√

1 − T 2
0 P

−2
ip−1/2(T0) + 2P−1

ip−1/2(T0)
}

,

aL =
√

1 − T 2
L

{

− vL(p2 +
9

4
)
√

1 − T 2
L P

−2
ip−1/2(TL) + 2P−1

ip−1/2(TL)
}

, (3.10)

bL =
√

1 − T 2
L

{

− vL(p2 +
9

4
)
√

1 − T 2
L P

−2
ip−1/2(−TL) − 2P−1

ip−1/2(−TL)
}

.

Using relations 3.2 (14), 3.4 (1), 2.3.2 (17) from [41], we can derive the asymptotic behavior

of the conical function P−m
ip−1/2(cos θ) for large p:

P−m
ip−1/2(cos θ) =

1√
2π sin θ

epθ

pm
√
p
(1 + O(p−1)) , 0 < θ < π , (3.11)

and thus we get

D|q→−∞ ≈ − 1

p2

v0vL

2πp
√

sin θ0 sin θL

(

ep(2π−θ0−θL) − ep(θ0+θL)
)

, (3.12)

where cos θi = Ti.

Now we are ready to look at (3.6), which implies

D|q=0 > 0 and D|q→−∞ > 0 , (3.13)

or

D|q=0 < 0 and D|q→−∞ < 0 . (3.14)

Note that the sign of D|q→−∞ is the same as the sign of

v0vL(cos−1 T0 + cos−1 TL − π) . (3.15)

Figure 6 shows the tachyon counting for models in the (vL, wL) plane when v0 > 0.

The sign of D|q=0 flips when we cross the line C̄(0)
g = 0, which is shown as the solid curve.

The sign of (3.15) flips whenever we cross one of the two dashed straight lines. The vertical

dashed line is just vL = 0. The slanted dashed line is

wL = −6(1 − T 2
0 )vL − 12T0 . (3.16)

Thus the shaded region in Figure 6 gives models which have a single tachyon (or are not

AdS5/AdS4). The models in the four unshaded regions have an even number of tachyons.

Models in the large unshaded region to the right of vL = 0 are tachyon-free, as expected.
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Figure 6: D|q=0 × D|q→−∞ > 0 on (vL, wL)-plane when v0 = 2 and w0 = 1. The solid curve is

where D|q=0 = 0 and dashed straight lines are D|q→−∞ = 0.

By further numerical analysis, we find that models in the upper two remaining un-

shaded regions are also tachyon-free, while models in the lower one have two tachyons.

Once we also require C̄(0)
g > 0, only the middle unshaded area remains. This region is

rather special. It contains no tachyons and obeys C̄(0)
g > 0. However in this region one can

see numerically that the massive KK graviton modes are kinetic ghosts.

Combining all of the above results with the additional requirement that C̄ψ > 0, i.e.

no ghost radion, we get figures like Figure 7 for (v0, w0) chosen such that T0 > 0. Models

which are ghost-free and tachyon-free correspond to the unshaded region in the (vL, wL)

plane. For v0 < 0, a similar analysis finds no region which is free of tachyons and ghosts.

These results fit qualitatively with our physical intuition. Models with negative Mi

are excluded. Models with too much negative tension branes are also excluded.

A special case is that of an infinite extra dimension. In our general framework we

make models of this type by sending L → ∞. We do this by fixing wL = +12 and (for

simplicity) vL = 0. In this limit the graviton zero mode is not normalizable and drops out

of the theory, so there is no C(0)
g to consider. As for Cψ, since TL = +1, (3.3) becomes

Cψ =
3χ2H2

2k

(1 + T0)(2 + v0 + v0T0)

1 + v0T0
, (3.17)

which is positive for any v0 and w0 < 12. Our tachyon analysis reduces to examining a0|q=0
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Figure 7: Allowed region (unshaded) on (vL, wL)-plane with v0 = 2 and w0 = 1.

and a0|q→−∞. Since

a0|q=0 = −(1 − T 2
0 ) < 0 ,

and

a0|q→−∞ ≈ −v0
1 − T 2

0√
2π sin θ0

ep(π−θ0)

√
p

, (3.18)

only v0 > 0 is allowed. So in this class of models the allowed region is v0 > 0 and w0 < 12.

4. Strong coupling

For generic choices of the four input parameters v0, w0, vL and wL we will not have a strong

coupling problem, as long as we choose parameters away from the borderline between ghost

and non-ghost regions, and away from limits where H → 0.

To determine the strong coupling scale, we need to calculate the cubic action for the

radion. See Appendix A for the details of the calculation. The general cubic expansion of

the radion part of (2.1) is

S

2M3

∣

∣

∣

ψ3
=

∫

d4x
√−g

(

C(3)
1 ∇̂2ψ{(∇̂2ψ)2 − ∇̂µ∇̂νψ∇̂µ∇̂νψ}

+C(3)
2 ψ{(∇̂2ψ)2 − ∇̂µ∇̂νψ∇̂µ∇̂νψ} + C(3)

3 ψ2∇̂2ψ + C(3)
4 ψ3

)

. (4.1)
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When it comes to the strong coupling, C(3)
1 would be expected to give the most stringent

limit. However with F (y) determined by (3.1), direct calculation shows that

C(3)
1 =

∑

i

[( θi + viz

2(1 − z)
F(y) − χ(θi −

1 − z

2
vi)
)

(H2

4k2

F(y)2

1 + z
+

χ

2k

(1 − z)2

1 + z
F(y) +

χ2

4H2

(1 − z)4

1 + z

)]

y=yi

= 0 , (4.2)

The next candidate, C(3)
2 , turns out to be

C(3)
2 =

∑

i

θi

[

− F(y)3

12
+
χH2

k2

FF(y)

1 + z

]

y=yi

+
2χH2

k

∫ L

0

FF(y)

1 + z
dy

= χ3α0 − αL
12

{

α2
0 + α0αL + α2

L +
−12αLT

−1
0 − 12α0T

−1
L + 6(α0 − αL) log 4

T−1
0 + T−1

L

+
6(α0 − αL)

(T−1
0 + T−1

L )2

(

Li2(−
1 + T0

1 − T0
) − Li2(−

1 − TL
1 + TL

)
)}

, (4.3)

where T−1
i = tanh−1 Ti and Lin is a polylogarithm function. This does not vanish. Then

from the full radion action

S |ψ = 2M3Cψ
∫

d4x
√

−ĝ ψ∇̂2ψ

+2M3C(3)
2

∫

d4x
√

−ĝ ψ{(∇̂2ψ)2 − ∇̂µ∇̂νψ∇̂µ∇̂νψ} + · · ·

=

∫

d4x
√

−ĝ ψ̄∇̂2ψ̄

+
2M3C(3)

2

(2M3Cψ)3/2

∫

d4x
√

−ĝ ψ̄{(∇̂2ψ̄)2 − ∇̂µ∇̂νψ̄∇̂µ∇̂νψ̄} + · · · , (4.4)

we can determine the strong coupling scale:

Λsc = (2M3)1/6
C1/2
ψ

C(3)
2

1/3
. (4.5)

As an example, let’s consider a DGP-like limit (vL = 0, wL = +12, v0 is large). Then (4.5)

becomes

Λsc ∼
M2

M0

√
12 − w0 , (4.6)

where our parameter M0 is equivalent to the parameter MP in DGP. This agrees well with

[42].

In our general framework we can understand the robustness of the strong coupling

problem. As long as we restrict ourselves to models in the ghost+tachyon free region of

the parameter space, the coefficient C̄(0)
g of the graviton kinetic term never vanishes, as can
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be seen from (2.31). From (4.5) we can see that the radion becomes strongly coupled in

any limit where H → 0. This includes the DGP-like limit just mentioned, as well as the

“bigravity” limit T0 → +1. Unfortunately these are precisely the limits in which we find

ultralight graviton modes.

5. Green’s function analysis

In [35], the set of coupled equations of motion of the graviton and the radion was obtained

in a straight gauge. Once we eliminate the radion, we get four independent equations

involving the graviton only. These are of the form:

D(i)
µνρσh

ρσ = 0 , (5.1)

D(ii)
µν h

µν = 0 , (5.2)

[D(bdy)
µνρσ h

ρσ ]y=yi = 0 , (5.3)

where the full expressions are given in (B.6)-(B.8). These imply the following Green’s

function equations in the straight gauge:

D(i)
µνρσG

ρσ
;µ′ν′ =

1

M3
Oµν;µ′ν′(x, x

′)
δ(4)(x− x′)δ(y − y′)√−g , (5.4)

D(ii)
µν G

µν
;µ′ν′ = 0 , (5.5)

[D(bdy)
µνρσ G

ρσ
;µ′ν′ ]y=yi = 0 , (5.6)

where the AdS4 bitensor Oµν;µ′ν′(x, x
′) is given below. Then, for any given source, we get

the linearized solution for the graviton from

hµν(x, y) =

∫

d4x′dy
√−g Gµν;µ′ν′(x, y;x′, y′)T µ

′ν′(x′, y′) . (5.7)

In Appendix B, the Euclidean versions of (5.4)-(5.6) are explicitly solved to obtain the

Euclidean Green’s function. After dropping 4d total derivatives which will vanish when

contracted with a conserved stress tensor, we can write the following expression for the

Euclidean Green’s function on the 0-brane:

Gµν ;µ′ν′(x, x
′, y = y′ = 0) =

∑

j

G1(u; pj)

{

T
(3)
µν ;µ′ν′

−2

3

H4

p2
j − 1

4

T
(1)
µν ;µ′ν′

(

p2
j −

9

4
+ 3(1 + u)2 +

3(1 + u)
d
du lnQpj− 1

2
(1 + u)

)

}

, (5.8)

where the sum is over the residues of poles from the individual KK graviton modes. The

masses mj of these modes are determined by the solutions of (2.12), and are expressed in

terms of the parameter pj:

m2
j = H2(p2

j −
9

4
) . (5.9)
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The variable u is related to the geodesic distance µ between the points x and x′ in AdS4:

u = coshHµ− 1. The function G1(u; pj) is given by

G1(u; pj) = − 1

4π2H2M
(j)
4

2

d

du
Qpj−1/2(1 + u) , (5.10)

where Qpj−1/2 is a Legendre function. The AdS4 tensor structure of the Green’s function

(5.8) is contained in the bitensors T (1) and T (3), which are part of the complete bitensor

basis given in (B.12):

T
(1)
µν ;µ′ν′ = gµνgµ′ν′ ,

T
(3)
µν ;µ′ν′ = ∂µ∂µ′u∂ν∂ν′u+ ∂µ∂ν′u∂ν∂µ′u . (5.11)

The bitensor on the right hand side of (5.4) is given by:

Oµν;µ′ν′(x, x
′) =

1

2
(gµµ′gνν′ + gµν′gνµ′) , (5.12)

where we have defined bivectors:

gµµ′(x, x
′) = ∂µ∂µ′u− ∂µu∂µ′u

2 + u
. (5.13)

The bitensor Oµν;µ′ν′(x, x
′) is determined by requiring that it has the property:

Oµν;µ′ν′(x, x
′ = x)T µ

′ν′(x) = Tµν(x) , (5.14)

which can be checked easily using (5.12), (5.13).

Apart from the j-dependent coupling constant M
(j)
4 , the expressions (5.8) and (5.10)

are the same as those derived by Naqvi [43],[44] for a massive symmetric tensor in AdS4.

Note this is very different from the Green’s function for the DGP model, which in addition

to an overall coupling constant has extra gauge-dependent tensor structures [45] which

diverge as MP → ∞. In our straight gauge analysis of warped DGP-like limits, such

effects are completely absent. The breakdown of the linearized gravity approximation is

due entirely to strong coupling of the radion, as we discussed in the previous section.

The coupling constant M
(j)
4 is given by

1

M
(j)
4

2
=

H2

2kM3

bLP
−2
pj−1/2(−T0) − aLQ

2
pj−1/2(−T0)

[ ∂q(a0bL − b0aL) ]q=qj=p2j− 9
4

. (5.15)

This is the effective 4d gravitational coupling constant of the j-th KK mode of graviton to

matter on the 0-brane. Depending on the choice of input parameters, this coupling may

show crossover behaviour; if the values of (5.15) for modes heavier than some mass Λco are

highly suppressed compared to lower lying modes, then Λco defines a crossover scale.
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5.1 asymptotic behavior of the Green’s function

The u→ ∞ limit of the graviton Green’s function (5.8) shows how sources on the 0-brane

interact for geodesic separations which are large compared to 1/H, the AdS4 radius of

curvature. The asymptotic formulae can be extracted from [41], giving:

Gµν ;µ′ν′(x, x
′, y = y′ = 0) →

u→∞

∑

j

G1(u; pj)
{

T
(3)
µν ;µ′ν′ −

2H4

(pj + 1
2)2

u2T
(1)
µν ;µ′ν′

}

, (5.16)

where

G1(u; pj) →
u→∞

√
π 2−(pj+

1
2
)

4π2H2M
(j)
4

2

Γ(pj + 3/2)

Γ(pj + 1)
u−(pj+

3
2
) . (5.17)

For large u, u→ exp(Hµ). Thus from (5.17) we see that the contribution of each graviton

mode to the Euclidean Green’s function damps exponentially for large geodesic distances.

In models with a q < −9/4 tachyon, pj is imaginary, and the asymptotic contribution to

the Green’s function oscillates, as for a flat space tachyon.

5.2 vDVZ discontinuity

To investigate the vDVZ discontinuity problem, we will follow [46]–[49]. In the flat 4d

spacetime limit (Hµ ≪ 1, i.e., u → 0), expanding the Euclidean Green’s function (5.8)

gives

Gµν ;µ′ν′(x, x
′, y = y′ = 0)

∝
∑

j

1

µ2

(

δµµ′δνν′ + δµν′δν′ν′ −
2

3
· 3 + qj
2 + qj

δµνδµ′ν′
)

. (5.18)

As qj varies from 0 to ∞, (5.18) varies smoothly between the flat space Euclidean tensor

structure of a massless 4d graviton:

Gmassless
µν ;µ′ν′ ∝

1

µ2
(δµµ′δνν′ + δµν′δνµ′ − δµνδµ′ν′) , (5.19)

and that of a massive 4d graviton:

Gmassless
µν ;µ′ν′ ∝

1

µ2
(δµµ′δνν′ + δµν′δνµ′ −

2

3
δµνδµ′ν′) , (5.20)

The condition for an ultralight graviton mode to avoid the vDVZ discontinuity problem is

that qj → 0 in the limit H → 0.

6. Warped models with an infinite extra dimension

As an application of the different results developed in the previous sections, we will highlight

here the phenomenology of a model with an infinite extra dimension. This generalizes the

single brane Karch-Randall (KR) model to include a localized curvature term. In order
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to get L = ∞ we fix wL = 12 (thus TL = 1). Also we choose for simplicity vL = 0. The

model is therefore completely determined by the higher dimensional Planck mass, M , the

bulk curvature k, and the two brane parameters v0 and w0. The ratio of brane to bulk

curvature reads
H

k
=
√

1 − T 2
0 , (6.1)

where T0 is given in terms of v0 and w0 by equation (2.6). Different limits of this model

have been studied by a number of authors [19],[49]–[54].

The infinite extra dimension results in the graviton zero mode being non-normalizable

and therefore it decouples from the spectrum, whereas for strong warping (i.e. large k/H)

there appears an ultralight (m1 ≪ H) graviton mode. The ultralight mode couples to

brane matter with comparable strength as the RS zero mode, while the rest of the graviton

spectrum is heavier than H and has much weaker couplings due to the warping. For large

localized curvature term, the mass of the different modes decrease as we increase v0, with

the first mode again becoming ultralight. The coupling of the KK modes to brane matter,

on the other hand, is suppressed only for modes heavier than some crossover scale. This

crossover scale depends on the size of v0. In the following we shall see how our general

results, when particularized to this model, reproduce these features.

All our general equations can be readily adapted to an infinite dimension by noticing

that TL = 1 implies aL = 0. The y-dependent part of the graviton KK mode wave function

reads now

Y(q)(z) = P−2
(−1+

√
9+4q)/2

(z), (6.2)

with z ≡ tanh k(y − y0) and ky0 = tanh−1 T0. The masses are given by m2 = qH2, where

q is determined by the zeroes of the equation

a0(q) = 0, (6.3)

with a0 given in (2.13). The kinetic coefficients for graviton KK modes and the radion

can be obtained directly from (2.32) and (3.3) by taking the corresponding values of the

different parameters,

C(q)
g =

k

H2

(

2

∫ 1

−T0

Y(q)2dz + v0(1 − T 2
0 )Y(q)2(−T0)

)

, (6.4)

Cψ =
3χ2H2

2k

(1 + T0)(2 + v0 + v0T0)

1 + v0T0
. (6.5)

We have not written C
(0)
g because, as expected, TL = 1 renders the massless graviton

non-normalizable and therefore it decouples from the rest of the spectrum. Similarly, the

couplings of the KK modes to the brane at y = 0 can be obtained from (2.36). As

an example, we show in Figure 8 the masses of the first five modes (in units of the brane

curvature H) as a function of k/H, for v0 = 0 (this is the original KR model). The warping

makes the mass of the different modes smaller as k/H increases, and in particular singles
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Figure 8: Masses (in units of the brane curvature H) for the first five massive graviton KK modes

as a function of the bulk to brane curvature ratio, k/H . The strong warping regime corresponds to

the far right region of the figure.
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Figure 9: Masses (in units of the brane curvature H) for the first five massive graviton KK modes

as a function of v0 for fixed H/k = 0.25 (left panel) and H/k = 0.95 (right panel).

out the first massive mode as an ultralight one, with mass much smaller than the brane

curvature. In Figure 9 we show the effect of the localized curvature term by plotting the

masses as a function of v0 for fixed value of H/k = 0.25 (left panel) and H/k = 0.95

(right panel). The effect is clearly not as dramatic as with the warping as we can see by

comparing the slopes of the curves with the ones of Figure 8 or the one on the right panel

(small warping) with the one on the left (large warping).

Now consider the couplings of the graviton modes to brane matter. In Figure 10 we

show the couplings of the different KK modes to the brane at y = 0 in units of the first

mode coupling. Again the warping effect is clear, with very suppressed couplings for large

warping (large k/H). In Figure 11, we show the coupling as a function of v0, for fixed

values of H/k = 0.25 (left) and H/k = 0.95 (right). In the left panel we see how the

warping makes the effect of the curvature term less acute, whereas the right one, where
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the warping is very small, clearly shows the effect of v0. This plot also shows that the

couplings of the different modes are more or less suppressed depending on their masses (a

clear hint of the crossover behaviour).
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Figure 10: Coupling of the first five massive graviton KK modes to the brane at y = 0 (in units of

the coupling of the first mode) as a function of the brane to bulk curvature ratio, H/k. The strong

warping regime corresponds to the left of the figure.
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Figure 11: Coupling of the j = 2,3,4,5 massive graviton KK modes to the brane at y = 0 (in

units of the coupling of the first mode) as a function of v0 for fixed H/k = 0.25 (left panel) and

H/k = 0.95 (right panel).

The crossover behaviour is best seen by plotting the coupling of the different modes

as a function of their masses, for different values of v0. We do this in Figure 12, where

we have fixed H/k = 1 (small warping) and the different sets of points correspond to

v0 = 0.05, 0.1, 0.15, 0.25 and 0.4, from top to bottom. We have superimposed (solid lines)

the expectation for these couplings in the DGP model as given in [20], with a crossover

scale rc = v0/k. It is clear from the figure that once the localized curvature term is large

enough to suppress warping effects the agreement is quite good.
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Figure 12: The dots represent the couplings of the massive graviton KK modes to the brane at

y = 0 (in units of the coupling of the first mode) as a function of their mass (in units of H), for

v0 = 0.05, 0.1, 0.15, 0.25 and 0.4, respectively and fixed H/k = 1. The lines correspond to the

expectation from the DGP model with crossover scale rc = v0/k.

Let us now turn to the Green’s function analysis in the KR model. Using the fact that

aL = 0 we can write (B.67) as,

G1(u, y = y′ = 0) =

i

16π3HM3

∫ ∞

−∞
dp

pP−2
ip−1/2(−T0)

−H
2kv0(p

2 + 9
4 )P−2

ip−1/2(−T0) − P−1
ip−1/2(−T0)

·
Q1
ip−1/2(1 + u)
√

u(2 + u)
. (6.6)

Then we immediately see that our spectrum is determined by solving

H

2k
v0(p

2 +
9

4
)P−2

ip−1/2(−T0) + P−1
ip−1/2(−T0) = 0 , (6.7)

which of course gives the same result as the KK analysis. We now contour-integrate (6.6)

to get

G1(u, y = y′ = 0) =

1

8π2HM3

∑

ν>−1/2

[ (ν + 1
2 )P−2

ν (−T0)

∂ν{H2kv0(ν2 + ν + 5
2)P−2

ν (−T0) + P−1
ν (−T0)}

· Q
1
ν(1 + u)

√

u(2 + u)

]

ν=pj− 1
2

, (6.8)

where the sum is over the poles of (6.7). Comparing this with (5.10), we obtain

1

M
(j)
4

2
= − H

2M3

[ (ν + 1
2)P−2

ν (−T0)

∂ν{H2k v0(ν2 + ν + 5
2 )P−2

ν (−T0) + P−1
ν (−T0)}

]

ν=pj− 1
2

. (6.9)

As we show in Figure 13, the couplings computed this way (dots at y = 0 in the figure)

agree with the ones computed in the KK analysis (lines for couplings of the j−th KK

modes, with j = 1, 2, 4, 6 to a probe brane as a function of its location). We have fixed

H/k = 0.95 and v0 = 1 in this plot and consider values of y ≤ 2y0. It is also trivial to

check that the masses and couplings agree with the results in [38], by taking v0 = 0 in the

equations above.
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Figure 13: Coupling of the j−th graviton KK mode (in units of H/M3) to a probe brane localized

at y for 0 ≤ y ≤ 2y0. We have fixed H/k = 0.95 and v0 = 1 and j = 1, 2, 4, 6 from top to bottom in

the coupling at the brane at y = 0. The dots correspond to the couplings to the brane as computed

in the Green’s function analysis.

7. Conclusion

One of the frustrations of trying to understand braneworld gravity is the large number of

models which display various combinations of interesting or problematic features. In this

paper, following [35], we have addressed this difficulty by introducing a general unified

framework. This framework describes general 5d warped setups with two branes and local-

ized curvature. Apart from the 5d Planck mass M and the bulk curvature k, there are only

four input parameters: (v0, w0, vL, wL), related to the two brane tensions and the strength

of the localized curvature. This framework includes as special cases both Randall-Sundrum

models, both Karch-Randall models, the Lykken-Randall model, bigravity models, as well

as a large class of DGP-like models, where the localized curvature competes with or dom-

inates the warping.

Our unified framework has the additional advantage that we can gauge-fix the 5d

general covariance explicitly, and exhibit the gauge-fixed 4d effective action for the physical

degrees of freedom. This we have done in section 2, building on the results of [35]. In section

3, we used this effective action, together with an analysis of the KK graviton spectrum, to

reveal the presence of kinetic ghosts and tachyons in a large class of models. Depending

on choices of our four input parameters, we found examples of models where the radion is

a ghost, the massless graviton is a ghost, or the massive graviton modes are ghosts. We

also found models containing one or two tachyons in the graviton spectrum.

Our framework is especially well-suited for examining the problem of strong coupling.

In the literature, the phenomenon we call strong coupling has shown up in many confusing

guises, all having to do with a breakdown of the linearized approximation for braneworld
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gravity. Here, we mapped out the parameter space in which either the radion or the

massless graviton become strongly coupled. We found that the graviton only becomes

strongly coupled for models which also contain tachyons and ghosts. We also noted that,

in our straight gauge formalism, the graviton propagator does not have tensor structures

which diverge as an ultralight mode becomes massless [45]. Because we are always in a

straight gauge, we also don’t have to worry about large brane-bending effects [55].

Thus in our framework strong coupling is an isolated property of the radion, and can

be studied in a straightforward way. In section 4 we have written a general formula for

the resulting strong coupling scale in our framework. We observed that there is a tight

relationship between strong coupling and the presence of an ultralight graviton mode. This

was known for the DGP and bigravity models, but here we see it in a unified picture that

interpolates smoothly between both kinds of models. As expected, the vDVZ discontinuity

is never present for ultralight modes in our warped setups.

In section 6 we studied the effects of localized curvature in the subset of models that

have an infinite extra dimension. These are the models in which the usual 4d massless

graviton is absent, having decoupled in the limit that we removed the second brane. We saw

that localized curvature and warping both have the effect of making an ultralight graviton

from the first massive KK mode. We compared these two effects in models which contain

both. The dimensionless parameter v0 controls the strength of the localized curvature,

while the dimensionless ratio k/H measures the strength of the warping. By looking at

models with comparable values for these parameters, we saw that the warping effect is

stronger. Thus “locally localized” gravity is more efficient than localized curvature in

creating a simulacrum of 4d gravity.

Finally, in section 6 we exhibited explicit crossover behavior for models in our general

setup. In these models the couplings of the KK graviton modes to brane matter are

unsuppressed up to a mass scale 1/rc ∼ k/v0, and are highly suppressed for modes heavier

than this scale. This behavior is the most interesting phenomenological feature of DGP

braneworld gravity; here we have found it in a general warped framework. Our results, as

seen in Figure 12, agree quantitatively with what one would predict by analogy with DGP.

We have opened a window to a new class of models which have crossover scales from

four dimensional gravity at short distance to five dimensional gravity at longer distances.

We have presented a well-defined framework to analyze strong coupling behavior, which

remains a fundamental obstacle towards developing realistic effective theories of braneworld

gravity.
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A. Radion action to cubic order

With hµ4 = 0, the general cubic expansion of (2.1) is

S

2M3

∣

∣

∣

cubic

=

∫

d5x
√−g

(H2

4a2
h̃3 − 3H2 + a′2

2a2
h̃hµνhµν + 2k2hµνhµαh

α
ν

+
1

8
h̃h̃′2 +

1

2
hµν ′h′µαh

α
ν − 1

8
h̃hµν ′h′µν −

1

4
h̃′(hµνhµν)

′

− 1

16
h̃2∇̃2h̃+

1

4
h̃hµν∇̃µ∇̃ν h̃− 1

8
h̃∇̃µh

αβ∇̃µhαβ −
1

4
∇̃µh̃∇̃µ(hαβhαβ)

−1

2
h̃∇̃µ(h

µα∇̃νh
ν
α) − 1

4
h̃∇̃νh

µα∇̃µh
ν
α − 1

2
h̃hµα∇̃ν∇̃µh

ν
α

+
1

4
hµν∇̃µh

αβ∇̃νhαβ −
1

4
hµν∇̃µ∇̃ν(h

αβhαβ) +
1

2
hµν∇̃αhµβ∇̃αhβν

−hµν∇̃µh
αβ∇̃βhνα − 1

2
hµν∇̃αh

β
µ∇̃βh

α
ν

−3a′2

a2
h3

44 +
−3H2 + 12a′2

8a2
h̃h2

44 +
9a′

8a
h̃′h2

44

+
3H2

4a2
h̃2h44 +

−3H2 + a′2

2a2
hαβhαβh44

−3a′

8a
h̃2′h44 −

1

8
h̃′2h44 +

1

8
hαβ ′h′αβh44 +

3a′

4a
(hαβhαβ)

′h44

+
1

8
h2

44∇̃2h̃− 1

8
h2

44∇̃µ∇̃νh
µν − 1

16
h̃2∇̃2h44 −

1

8
h44h̃∇̃2h̃+

1

4
h̃hµν∇̃µ∇̃νh44

+
1

4
h44h

µν∇̃µ∇̃ν h̃− 1

8
h44∇̃µh

αβ∇̃µhαβ −
1

4
∇̃µh44∇̃µ(hαβhαβ)

−1

2
h44∇̃µ(h

µα∇̃νh
ν
α) − 1

4
h44∇̃νh

µα∇̃µh
ν
α − 1

2
h44h

µα∇̃ν∇̃µh
ν
α

)

+
∑

i

∫

d4x
[√−g λi

(H2

4a2
h̃3 − 3H2

2a2
h̃hµνhµν +

2H2

a2
hµνhµαh

α
ν

− 1

16
h̃2∇̃2h̃+

1

4
h̃hµν∇̃µ∇̃ν h̃− 1

8
h̃∇̃µh

αβ∇̃µhαβ −
1

4
∇̃µh̃∇̃µ(hαβhαβ)

−1

2
h̃∇̃µ(h

µα∇̃νh
ν
α) − 1

4
h̃∇̃νh

µα∇̃µh
ν
α − 1

2
h̃hµα∇̃ν∇̃µh

ν
α

+
1

4
hµν∇̃µh

αβ∇̃νhαβ −
1

4
hµν∇̃µ∇̃ν(h

αβhαβ) +
1

2
hµν∇̃αhµβ∇̃αhβν

−hµν∇̃µh
αβ∇̃βhνα − 1

2
hµν∇̃αh

β
µ∇̃βh

α
ν

)]

y=yi

. (A.1)
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The following identities will be useful:

∇µh
αβ = ∇̃µh

αβ , ∇µh44 = ∇̃µh44 ,

∇µh
α4 =

a′

a
(δαµh44 − hαµ) , ∇4h

α4 = 0 ,

∇4h
αβ = hαβ ′ +

2a′

a
hαβ , ∇4hαβ = h′αβ −

2a′

a
hαβ ,

hαβ ′hαβ =
1

2
(hαβhαβ)

′ − 2a′

a
hαβhαβ , hαβh′αβ =

1

2
(hαβhαβ)

′ +
2a′

a
hαβhαβ ,

hαβ ′hαµh
µ
β =

1

3
(hαβhαµh

µ
β)

′ − 2a′

a
hαβhαµh

µ
β ,

hαβh′αµh
µ
β =

1

3
(hαβhαµh

µ
β)

′ +
2a′

a
hαβhαµh

µ
β .

Upon making the substitutions

hµν → a2Y1(y)∇̃µ∇̃νψ + gµνY2(y)ψ , h44 = Fψ , (A.2)

(A.1) produces a few hundred terms. Collecting terms with three Y1’s, the bulk part gives

a6
{

Y3
1

(

− 1

16
(∇̃2ψ)2∇̃4ψ +

1

4
∇̃2ψ∇̃µ∇̃νψ∇̃µ∇̃ν∇̃2ψ − 1

8
∇̃2ψ∇̃µ∇̃α∇̃βψ∇̃µ∇̃α∇̃βψ

−1

4
∇̃µ∇̃2ψ∇̃µ(∇̃α∇̃βψ∇̃α∇̃βψ) − 1

2
∇̃2ψ∇̃µ(∇̃µ∇̃αψ∇̃2∇̃αψ)

−1

4
∇̃2ψ∇̃µ∇̃α∇̃βψ∇̃α∇̃µ∇̃βψ − 1

2
∇̃2ψ∇̃µ∇̃αψ∇̃ν∇̃µ∇̃ν∇̃αψ

+
1

4
∇̃µ∇̃νψ∇̃µ∇̃α∇̃βψ∇̃ν∇̃α∇̃βψ − 1

4
∇̃µ∇̃νψ∇̃µ∇̃ν(∇̃α∇̃βψ∇̃α∇̃βψ)

+
1

2
∇̃µ∇̃νψ∇̃α∇̃β∇̃µψ∇̃α∇̃β∇̃νψ − ∇̃µ∇̃νψ∇̃µ∇̃α∇̃βψ∇̃α∇̃β∇̃νψ (A.3)

−1

2
∇̃µ∇̃νψ∇̃α∇̃β∇̃µψ∇̃β∇̃α∇̃νψ

+
H2

4a2
(∇̃2ψ)3 − 3H2

2a2
∇̃2ψ∇̃α∇̃βψ∇̃α∇̃βψ +

2H2

a2
∇̃µ∇̃νψ∇̃α∇̃µψ∇̃α∇̃νψ

)

+Y1Y ′
1
2
(1

8
(∇̃2ψ)3 − 5

8
∇̃2ψ∇̃α∇̃βψ∇̃α∇̃βψ +

1

2
∇̃µ∇̃νψ∇̃α∇̃µψ∇̃α∇̃νψ

)}

.

Performing 4d integration by parts a few dozen times, a dramatic simplification occurs and

(A.3) becomes:

a6Y1Y ′
1
2
{

− 1

8
(∇̃2ψ)3 +

1

8
∇̃2ψ∇̃α∇̃βψ∇̃α∇̃βψ

+
H2

a2

(

ψ(∇̃2ψ)2 − ψ∇̃α∇̃βψ∇̃α∇̃βψ − 3H2

2a2
ψ2∇̃2ψ

)}

. (A.4)

By a similar calculation, we can show that no term with three Y1’s survives in the brane-

boundary part. Note that terms with eight ∇̃’s are all cancelled.
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Repeating the above procedure with the remaining terms, we get the radion cubic

action:

S

2M2

∣

∣

∣

ψ3
= 2

∫

d4x

∫ L

0
dy

√−g
{

a6Y1Y ′
1
2
{

− 1

8
(∇̃2ψ)3 +

1

8
∇̃2ψ∇̃α∇̃βψ∇̃α∇̃βψ

+
H2

a2

(

ψ(∇̃2ψ)2 − ψ∇̃α∇̃βψ∇̃α∇̃βψ − 3H2

2a2
ψ2∇̃2ψ

)}

+a4Y2
1Y2

{1

8
(∇̃2ψ)3 − 1

8
∇̃2ψ∇̃α∇̃βψ∇̃α∇̃βψ

+
H2

a2

(

− 3

4
ψ(∇̃2ψ)2 +

9H2

4a2
ψ2∇̃2ψ

)}

+a4Y1Y ′
1Y ′

2

(1

4
ψ(∇̃2ψ)2 − ψ∇̃α∇̃βψ∇̃α∇̃βψ

)

+
(3H2

2
Y1Y2

2 +
3

4
Y3

2

)

ψ2∇̃2ψ

+a4FY2
1

{ 1

16
(∇̃2ψ)3 − 1

16
∇̃2ψ∇̃α∇̃βψ∇̃α∇̃βψ

+
H2

a2

(

− 3

8
ψ(∇̃2ψ)2 +

9H2

8a2
ψ2∇̃2ψ

)}

+a4FY1Y ′
1

3a′

4a
(−ψ(∇̃2ψ)2 + 2ψ∇̃α∇̃βψ∇̃α∇̃βψ)

+
1

8
a4FY ′

1
2(−ψ(∇̃2ψ)2 + ψ∇̃α∇̃βψ∇̃α∇̃βψ) (A.5)

+a2FY1Y2

(

− 1

2
ψ(∇̃2ψ)2 +

1

2
ψ∇̃α∇̃βψ∇̃α∇̃βψ +

3H2

a2
ψ2∇̃2ψ

)

−a2F
(3a′

2a
(Y ′

1Y2 + Y1Y ′
2) +

3

4
Y ′

1Y ′
2

)

ψ2∇̃2ψ

+FY2
2

(

− 3

8
ψ2∇̃2ψ +

6H2

a2
ψ3
)

− F
(6a′

a
Y2Y ′

2 +
3

2
Y ′

2
2
)

ψ3

+a2F 2
(3a′2

2a2
Y1 +

9a′

8a
Y ′

1

)

ψ2∇̃2ψ

+F 2Y2

(3

8
ψ2∇̃2ψ +

−3H2 + 12a′2

2a2
ψ3
)

+ F 2Y ′
2

9a′

2a
ψ3 − 3a′2

a2
F 3ψ3

}

+
∑

i

∫

d4x
[√−g

{

a4Y2
1Y2

{1

8
(∇̃2ψ)3 − 1

8
∇̃2ψ∇̃α∇̃βψ∇̃α∇̃βψ

+
H2

a2

(

− 3

4
ψ(∇̃2ψ)2 +

9H2

4a2
ψ2∇̃2ψ

)}

+
(3H2

2
Y1Y2

2 +
3

4
Y3

2

)

ψ2∇̃2ψ
}]

y=yi

.

Collecting terms of the same ∇̃-structure, we get (4.1).

B. Graviton Green’s function

In this section, we explicitly calculate the graviton Green’s function in the Euclidean sig-

nature.
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In [35], the bulk EOM for the graviton and the radion are obtained to be

0 = ∇̃ρ∇̃µh
ρ
ν + ∇̃ρ∇̃νh

ρ
µ − ∇̃2hµν − ∇̃µ∇̃ν h̃− gµν(∇̃ρ∇̃σh

ρσ − ∇̃2h̃)

−h′′µν + gµν h̃
′′ +

4a′

a
gµν h̃

′ +
8H2 + 4a′2

a2
hµν −

3H2

a2
gµν h̃

−F ∇̃µ∇̃νψ + gµνF ∇̃2ψ − 3a′

a
gµνF

′ψ − 6H2 + 12a′2

a2
gµνFψ , (B.1)

0 = (∇̃νh
ν
µ)

′ − ∂µh̃
′ +

3a′

a
F∂µψ , (B.2)

0 = −∇̃µ∇̃νh
µν + ∇̃2h̃+

3a′

a
h̃′ − 3H2

a2
h̃− 12a′2

a2
Fψ , (B.3)

0 =
(a2h̃′)′

a2
+ F ∇̃2ψ − 4a′

a
F ′ψ − 8k2Fψ , (B.4)

and the brane-boundary equation is

0 =
[

θi(hµν
′ − gµν h̃

′) +
(3λiH

2

a2
− 2kTi

)

hµν −
3λiH

2

2a2
gµν h̃+ 3kTigµνFψ

+
λi
2

(∇̃ρ∇̃µh
ρ
ν + ∇̃ρ∇̃νh

ρ
µ − ∇̃2hµν − ∇̃µ∇̃ν h̃)

−λi
2
gµν(∇̃ρ∇̃σh

ρσ − ∇̃2h̃)
]

y=yi

. (B.5)

Using (B.2) or (B.3) we eliminate the radion and get the equations involving the graviton

only. The bulk part gives only two independent equations:

0 = ∇̃µ∇̃ρh
ρ
ν + ∇̃ν∇̃ρh

ρ
µ − ∇̃2hµν − ∇̃µ∇̃ν h̃+ gµν

(

− 2

3
∇̃ρ∇̃σh

ρσ +
1

2
∇̃2h̃

)

−h′′µν + gµν
1

4
h̃′′ +

a′

a
gµν h̃

′ +
4a′2

a2
hµν +

H2

2a2
gµν h̃ (B.6)

+
a

3a′

(1

2
(∇̃µ∇̃ρh

ρ
ν
′ + ∇̃ν∇̃ρh

ρ
µ
′) − ∇̃µ∇̃ν h̃

′
)

+ gµν
a

12a′
(∇̃2h̃′ − ∇̃ρ∇̃σh

ρσ ′) ,

0 = −∇̃µ∇̃ρ∇̃σh
ρσ + ∇̃µ∇̃2h̃− a′

a
∇̃µh̃

′ − 3H2

a2
∇̃µh̃+

4a′

a
∇̃νh

ν
µ
′ , (B.7)

and the brane-boundary part gives

0 =
[

θi(hµν
′ − gµν

1

4
h̃′) −

(λiH
2

a2
+ 2kTi

)

hµν −
H2

2a2

(

λi +
3

2kTi

)

gµν h̃

+
λi
2

(∇̃µ∇̃ρh
ρ
ν + ∇̃ν∇̃ρh

ρ
µ − ∇̃2hµν − ∇̃µ∇̃ν h̃)

−
(λi

2
+

1

4kTi

)

gµν(∇̃ρ∇̃σh
ρσ − ∇̃2h̃)

]

y=yi

. (B.8)

Then, from (B.6) and (B.7) we get the equations which the graviton Green’s function
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should satisfy, whereas (B.8) provides the boundary conditions on the branes:

∇̃µ∇̃ρG
ρ
ν;µ′ν′ + ∇̃ν∇̃ρG

ρ
µ;µ′ν′ − ∇̃2Gµν;µ′ν′ − ∇̃µ∇̃νG

ρ
ρ;µ′ν′

+gµν

(

− 2

3
∇̃ρ∇̃σG

ρσ
;µ′ν′ +

1

2
∇̃2Gρρ;µ′ν′

)

−Gµν;µ′ν′ ′′ + gµν
1

4
Gρρ;µ′ν′

′′ +
a′

a
gµνG

ρ
ρ;µ′ν′

′ +
4a′2

a2
Gµν;µ′ν′ +

H2

2a2
gµνG

ρ
ρ;µ′ν′

+
a

3a′

(1

2
(∇̃µ∇̃ρG

ρ
ν;µ′ν′

′ + ∇̃ν∇̃ρG
ρ
µ;µ′ν′

′) − ∇̃µ∇̃νG
ρ
ρ;µ′ν′

′
)

(B.9)

+gµν
a

12a′
(∇̃2Gρρ;µ′ν′

′ − ∇̃ρ∇̃σG
ρσ
;µ′ν′

′)

=
1

2M3
(gµµ′gνν′ + gµν′gνµ′)

δ(4)(x− x′)√
g

δ(y − y′) ,

−∇̃µ∇̃ρ∇̃σG
ρσ
;µ′ν′ + ∇̃µ∇̃2Gρρ;µ′ν′ −

a′

a
∇̃µG

ρ
ρ;µ′ν′

′ − 3H2

a2
∇̃µG

ρ
ρ;µ′ν′ +

4a′

a
∇̃νG

ν
µ;µ′ν′

′

= 0 , (B.10)

[

θi(Gµν;µ′ν′
′ − gµν

1

4
Gρρ;µ′ν′

′) −
(λiH

2

a2
+ 2kTi

)

Gµν;µ′ν′ −
H2

2a2

(

λi +
3

2kTi

)

gµνG
ρ
ρ;µ′ν′

+
λi
2

(∇̃µ∇̃ρG
ρ
ν;µ′ν′ + ∇̃ν∇̃ρG

ρ
µ;µ′ν′ − ∇̃2Gµν;µ′ν′ − ∇̃µ∇̃νG

ρ
ρ;µ′ν′)

−
(λi

2
+

1

4kTi

)

gµν(∇̃ρ∇̃σG
ρσ
;µ′ν′ − ∇̃2Gρρ;µ′ν′)

]

y=yi

= 0 . (B.11)

Now we follow [44] and [43] to solve (B.9)-(B.11). First we decompose Gµν;µ′ν′ using the

five independent bitensor bases:

Gµν;µ′ν′ =
5
∑

i=1

T
(i)
µν;µ′ν′A

(i)(u, y, y′) , (B.12)

where u = coshHµ− 1 with µ the geodesic distance between x and x′, and

T
(1)
µν;µ′ν′ = gµν gµ′ν′ ,

T
(2)
µν;µ′ν′ = ∂µu∂νu∂µ′u∂ν′u ,

T
(3)
µν;µ′ν′ = ∂µ∂µ′u∂ν∂ν′u+ ∂µ∂ν′u∂ν∂µ′u , (B.13)

T
(4)
µν;µ′ν′ = gµν∂µ′u∂ν′u+ gµ′ν′∂µu∂νu ,

T
(5)
µν;µ′ν′ = ∂µ∂µ′u∂νu∂ν′u+ ∂ν∂µ′u∂µu∂ν′u+ (µ′ ↔ ν ′) .

Then we reorganize (B.12) into

Gµν;µ′ν′ = T (3)a4G1(u, y, y
′) + T (1)G2(u, y, y

′)

+∇̃µLν;µ′ν′ + ∇̃νLµ;µ′ν′ + ∇̃µ′Λµν;ν′ + ∇̃ν′Λµν;µ′ , (B.14)
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where

Λν;µ′ν′ = gµ′ν′∂νua
2A(u, y, y′) + ∂µ′u∂ν′u∂νua

4C(u, y, y′)

+∂ν(∂µ′u∂ν′u) a
4B(u, y, y′) , (B.15)

Λµν;ν′ = gµν∂ν′ua
2A(u, y, y′) + ∂µu∂νu∂ν′ua

4C(u, y, y′)

+∂ν′(∂µu∂νu) a
4B(u, y, y′) . (B.16)

With this reorganization, we can single out the physically meaningful part, G1 and G2.

The A(i)’s and G1, G2, A,B,C are related by

A(1) = G2 + 4H2(1 + u)A , A(2) = 4a4Ċ , A(3) = a4(G1 + 4B) ,

A(4) = a2f̄ ≡ a2{2Ȧ+ 2H2(2B + (1 + u)C)} , A(5) = 2a4(Ḃ + C) , (B.17)

with an overdot implying ∂/∂u. Upon plugging (B.14) into (B.9), we get

T (1)H2E1 + T (2)a2E2 + T (3)a2E3 + gµν∂µ′u∂ν′uH
2E4 + gµ′ν′∂µu∂νu Ẽ4 + T (5)a2E5

=
1

2M3
(gµµ′gνν′ + gµν′gνµ′)

δ(4)(x− x′)√
g

δ(y − y′)

=
1

2M3

a4

H4

( 2T (2)

(2 + u)2
+ T (3) − T (5)

2 + u

)(H4

a4

δ(u)

4π2u

)

δ(y − y′) , (B.18)

where we have converted gµµ′gνν′ + gµν′gνµ′ into T (i)’s applying the relations given in [44].

To convert δ(4)(x − x′) into δ(u), we start from a Euclideanized global coordinate system

(τ, ρ, θ, φ)

H2

a2
ds2 = cosh2 ρ dτ2 + dρ2 + sinh2 ρ(dθ2 + sin2 θ dφ2) , (B.19)

where u measured from (0, 0, 0, 0) to (τ, ρ, 0, 0) can be explicitly written as

u = cosh ρ cosh τ − 1 . (B.20)

Note that at a given u, τ is restricted by − cosh−1(1+u) < τ < cosh−1(1+u). Transforming

to (τ, u, θ, φ),

H2

a2
ds2 =

u(1 + u)2(2 + u)sech2τ

(1 + u)2 − cosh2 τ
dτ2 +

1

(1 + u)2 − cosh2 τ
du2

− 2(1 + u) tanh τ

(1 + u)2 − cosh2 τ
dτdu+

(1 + u)2 − cosh2 τ

cosh2 τ
(dθ2 + sin2 θdφ2) . (B.21)

Then, when integrated with a function depending on u only,

δ(4)(x− x′)√
g

=
H4

a4

δ(τ)δ(u)δ(θ)δ(φ)

(1 + u)sech2τ
√

(1 + u)2sech2τ − 1 sin θ

=
H4

a4

δ(u)δ(τ)

4π(1 + u)sech2τ
√

(1 + u)2sech2τ − 1

=
H4

a4

δ(u)

4π2u
. (B.22)
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In the last step we use, for arbitrary function f of u,

∫

dudτ
√

g(τ, u)
δ(τ)δ(u)
√

g(τ, u)
f(u) = f(0) =

∫

dudτ
√
g

δ(u)
∫

dτ
√
g
f(u) , (B.23)

and then replace δ(τ)/
√
g by 1/

∫

dτ
√
g, where

∫

dτ
√
g =

∫ cosh−1(1+u)

− cosh−1(1+u)
dτ (1 + u)2sech2τ

√

1 − 1

(1 + u)2
− tanh2 τ

=
π

2
u(2 + u) . (B.24)

(B.10) gives

gµ′ν′∂νuE5 + ∂µ′u∂ν′u∂νuE6 + ∂ν(∂µ′u∂ν′u)E7 = 0 . (B.25)

Using several identities presented in [44],the Ei’s can be worked out:

E1 =
−2H4 + 6H2a′2

a2
G1 +

2H4

3a2
(1 + u)Ġ1 +

(4a′

a
H2 − H4

2aa′

)

G1
′ +

4H4

3a2
u(2 + u)G̈1

+
1

2
H2G1

′′ − a

6a′
H4

a2
(1 + u)Ġ1

′
+

a

6a′
H4

a2
u(2 + u)G̈1

′

+
1

a2
u(2 + u)G̈2 +

1

4aa′
u(2 + u)G̈2

′

+
8H2

a2
(1 + u)2f +

H2

a2
u(1 + u)(2 + u)ḟ

+
(

− 3H2

a2
u(2 + u) − 6H2

a2
(1 + u)2 +

4H2

a2
+

3a′2

a2
u(2 + u)

)

f̄ − 2H2

a2
u(1 + u)(2 + u) ˙̄f

+
( a

2a′
H2

a2
+

2a′

a
u(2 + u) − a

4a′
H2

a2
u(2 + u)

)

f̄ ′ +
1

4
u(2 + u)f̄ ′′ − a

4a′
H2

a2
u(1 + u)(2 + u) ˙̄f ′

+
(24H2

a2
(1 + u)2 +

16H2

a2
u(2 + u)

)

Ȧ+
2a

a′
H2

a2
u(2 + u)Ȧ′

+
8H2

a2
u(1 + u)(2 + u)Ä+

a

a′
H2

a2
u(1 + u)(2 + u)Ä′

+
−24H4 + 24H2a′2

a2
B +

(16a′

a
H2 − 2a

a′
H4

a2

)

B′ + 2H2B′′

−8H4

3a2
(1 + u)Ḃ − 4a

3a′
H4

a2
(1 + u)Ḃ′

−40H4

3a2
(1 + u)C − 2a

3a′
H4

a2
(1 + u)C ′ , (B.26)

E2 = Z̈ − 10

3
H2G̈1 −

2a

3a′
H2G̈1

′

−8

3
H2(1 + u)

...
B +

8

3
H2B̈ − 4a

3a′
H2(1 + u)

...
B

′
+

4a

3a′
H2B̈′

+
32

3
H2(1 + u)C̈ +

(40

3
H2 − 48a′2

)

Ċ − 4a2Ċ ′′

+
16a

3a′
H2(1 + u)C̈ ′ +

(32a

3a′
H2 − 32a′

a
a2
)

Ċ ′ , (B.27)
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E3 = Z +
(

4H2 − 12a′2
)

G1 −
4

3
H2(1 + u)Ġ1 +

(

− 8aa′ +
a

a′
H2
)

G1
′ −H2u(2 + u)G̈1

−a2G1
′′ +

a

3a′
H2(1 + u)Ġ1

′

−48a′2B +
16

3
H2(1 + u)Ḃ +

4

3
H2u(2 + u)B̈ +

( a

a′
4H2 − 32a′

a
a2
)

B′

−4a2B′′ +
8a

3a′
H2(1 + u)Ḃ′ +

2a

3a′
H2u(2 + u)B̈′

+
8

3
H2(1 + u)C − 4

3
H2u(2 + u)Ċ +

4a

3a′
H2(1 + u)C ′ − 2a

3a′
H2u(2 + u)Ċ ′ , (B.28)

E4 =
(

− 2H2 + 6a′2
)

G1 − 2H2(1 + u)Ġ1 +
(4a′

a
a2 − a

2a′
H2
)

G1
′ − 4

3
H2G̈1 +

1

2
a2G1

′′

− a

2a′
H2(1 + u)Ġ1

′ − a

6a′
H2G̈1

′

+10(1 + u)ḟ + u(2 + u)f̈ + 8f

+10f̄ +
a

2a′
f̄ ′ + 14(1 + u) ˙̄f +

a

a′
(1 + u) ˙̄f ′ + 2u(2 + u) ¨̄f +

a

4a′
u(2 + u) ¨̄f ′

+
(

24a′2 − 72H2
)

B +
(16a′

a
a2 − 2a

a′
H2
)

B′ + 2a2B′′ +
(

− 104H2 + 24a′2
)

(1 + u)Ḃ

−
(8

3
H2(1 + u)2 +

40

3
H2u(2 + u)

)

B̈ +
(

− 6a

a′
H2 +

16a′

a
a2
)

(1 + u)Ḃ′ + 2a2(1 + u)Ḃ′′

−
( 2a

3a′
H2u(2 + u) +

4a

3a′
H2(1 + u)2

)

B̈′

+
(

− 88H2 + 24a′2
)

(1 + u)C +
(16a′

a
a2 − 4a

a′
H2
)

(1 + u)C ′ + 2a2(1 + u)C ′′

+
(

− 44

3
H2u(2 + u) + 12a′2u(2 + u) − 160

3
H2(1 + u)2

)

Ċ

+
(

− 8a

3a′
H2(1 + u)2 − 7a

3a′
H2u(2 + u) +

8a′

a
a2u(2 + u)

)

Ċ ′ + a2u(2 + u)Ċ ′′

−8H2u(1 + u)(2 + u)C̈ − a

a′
H2u(1 + u)(2 + u)C̈ ′ , (B.29)

Ẽ4 = −10H4

3
G̈1 −

2a

3a′
H4G̈1

′ − 4G̈2 −
a

a′
G̈2

′
+ 4H2f + 2H2(1 + u)ḟ

−12a′2f̄ + 2H2(1 + u) ˙̄f +
(

− 8a′

a
a2 +

a

a′
H2
)

f̄ ′ +
a

a′
H2(1 + u) ˙̄f ′ − a2f̄ ′′

−8H2((1 + u)Ä+ 2Ȧ) − 4a

a′
H2((1 + u)Ä′ + 2Ȧ′)

−8H4

3
B̈ − 4a

3a′
H4B̈′ +

8H4

3
Ċ +

4a

3a′
H4Ċ ′ , (B.30)
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E5 = Ż +
8

3
H2Ġ1 +

4

3
H2(1 + u)G̈1 +

a

3a′
H2Ġ1

′
+

a

6a′
H2(1 + u)G̈1

′

+
(16

3
H2 − 24a′2

)

Ḃ +
8

3
H2(1 + u)B̈ +

2

3
H2u(2 + u)

...
B +

(14a

3a′
H2 − 16a′

a
a2
)

Ḃ′

−2a2Ḃ′′ +
4a

3a′
H2(1 + u)B̈′ +

a

3a′
H2u(2 + u)

...
B

′

+
(8

3
H2 − 24a′2

)

C +
16

3
H2(1 + u)Ċ − 2

3
H2u(2 + u)C̈ +

(10a

3a′
H2 − 16a′

a
a2
)

C ′

−2a2C ′′ +
8a

3a′
H2(1 + u)Ċ ′ − a

3a′
H2u(2 + u)C̈ ′ , (B.31)

E6 = −
(

6H4 + 4H2a′2
)

Ġ1 + 10H4(1 + u)G̈1 + 2H4u(2 + u)
...
G1 −2aa′H2Ġ1

′

+18(1 + u)G̈2 + 3u(2 + u)
...
G2

−36(1 + u)
(

H2 − a′2
)

f̄ − 3
(

H2
(

4 + 18u + 9u2
)

− 2u(2 + u)a′2
) ˙̄f

−3H2u(1 + u)(2 + u) ¨̄f + 18aa′(1 + u)f̄ ′ + 3aa′u(2 + u) ˙̄f
′

+144H2(1 + u)Ȧ+ 36H2
(

2 + 6u+ 3u2
)

Ä+ 12H2u(1 + u)(2 + u)
...
A

+16H2
(

− 3H2 + a′2
)

Ḃ + 8aa′H2Ḃ′

+
(

− 24H4 + 32H2a′2
)

C − 24H4(1 + u)Ċ + 16aa′H2C ′ , (B.32)

E7 =
(

− 42H2 − 4a′2
)

Ġ1 − 6H2(1 + u)G̈1 − 2H2
...
G1 −2aa′Ġ1

′

+42 ˙̄f + 30(1 + u) ¨̄f + 3u(2 + u)
...

f̄

+
(

− 336H2 + 160a′2
)

Ḃ − (240H2 − 16a′2)(1 + u)B̈ − 24H2u(2 + u)
...
B

+80aa′Ḃ′ + 8aa′(1 + u)B̈′

+
(

− 168H2 + 176a′2
)

C − 8(1 + u)
(

51H2 − 28a′2
)

Ċ

−12
(

H2
(

10 + 26u+ 13u2
)

− 2u(2 + u)a′2
)

C̈ − 12H2u(1 + u)(2 + u)
...
C

+88aa′C ′ + 112aa′(1 + u)Ċ ′ + 12aa′u(2 + u)C̈ ′ , (B.33)

E8 = 36
(

−H2 + a′2
)

G1 + 2(1 + u)
(

− 3H2 + 4a′2
)

Ġ1

−2H2G̈1 + 18aa′G1
′ + 4aa′(1 + u)Ġ1

′

+18f̄ + 24(1 + u) ˙̄f + 3u(2 + u) ¨̄f

−144
(

H2 − (a′)2
)

B − 16(1 + u)
(

12H2 − 7a′2
)

Ḃ − 8u(2 + u)
(

3H2 − 2a′2
)

B̈

+72aa′B′ + 56aa′(1 + u)Ḃ′ + 8aa′u(2 + u)B̈′

−8(1 + u)
(

21H2 − 10a′2
)

C − 8
(

3H2
(

4 + 10u + 5u2
)

− u(2 + u)a′2
)

Ċ

−12H2u(1 + u)(2 + u)C̈ + 40aa′(1 + u)C ′ + 4aa′u(2 + u)Ċ ′ , (B.34)

with

f ≡ −2Ȧ+ 2H2(2B + (1 + u)C) , (B.35)

Z ≡ 2f − 2f̄ − a

a′
f̄ ′ = −8Ȧ− 2a

a′
(Ȧ′ +H2(2B′ + (1 + u)C ′)) . (B.36)
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The brane-boundary part can be worked out similarly:

[T (1)H2E
(bb)
1 + T (2)a2E

(bb)
2 + T (3)a2E

(bb)
3

+gµν∂µ′u∂ν′uH
2E

(bb)
4 + gµ′ν′∂µu∂νu Ẽ

(bb)
4 + T (5)a2E

(bb)
5 ]y=yi = 0 , (B.37)

where

E
(bb)
1 = −

(

H2kTi +
H4

a2

( 3

kTi
+ 4λi

))

G1 +
H4

a2

( 3

2kTi
+ 2λi

)

(1 + u)Ġ1

+
H4

a2

( 1

2kTi
+ λi

)

u(2 + u)G̈1 −
θi
2
H2G1

′

− 3

a2

( 1

kTi
+ λi

)

G2 +
3

a2

( 1

kTi
+ λi

)

(1 + u)Ġ2 +
1

a2

( 3

4kTi
+ λi

)

u(2 + u)G̈2

+
4λiH

2

a2
(1 + u)2f +

λiH
2

2a2
u(1 + u)(2 + u)ḟ

−
(1

2
kTiu(2 + u) +

3H2

a2

(

1 + 6u+ 3u2
)

( 1

2kTi
+ λi

))

f̄ (B.38)

−3H2

2a2

( 1

2kTi
+ λi

)

u(1 + u)(2 + u) ˙̄f − θi
4
u(2 + u)f̄ ′

+
6H2

a2

( 1

kTi
+ 2λi

)

(

2 + 6u+ 3u2
)

Ȧ+
3H2

a2

( 1

kTi
+ 2λi

)

u(1 + u)(2 + u)Ä

−4H2
(

kTi +
H2

a2

( 3

kTi
+ 6λi

))

B − 2θiH
2B′ − 6H4

a2

( 1

kTi
+ 2λi

)

(1 + u)C ,

E
(bb)
2 = −λiH2G̈1 + λif̈ + 8kTia

2Ċ + 4θia
2Ċ ′ , (B.39)

E
(bb)
3 =

λi
2

(

−H2u(2 + u)G̈1 − 2H2(1 + u)Ġ1 + 4H2G1

)

+ 2kTia
2G1 + θia

2G1
′ + λif

+8kTia
2B + 4θia

2B′ , (B.40)

E
(bb)
4 = −

(

10λiH
2 +

9H2

kTi
+ a2kTi

)

G1 −
(

2λiH
2 +

3H2

2kTi

)

(1 + u)Ġ1

−H2
( 1

2kTi
+ λi

)

G̈1 −
θi
2
a2G′

1

+4λif + 5λi(1 + u)ḟ +
λi
2
u(2 + u)f̈

+9
( 1

2kTi
+ λi

)

f̄ + 12
( 1

2kTi
+ λi

)

(1 + u) ˙̄f +
3

2

( 1

2kTi
+ λi

)

u(2 + u) ¨̄f

−
(

72H2
( 1

2kTi
+ λi

)

+ 4a2kTi

)

B − 2θia
2B′ −

(

96H2
( 1

2kTi
+ λi

)

+ 4a2kTi

)

(1 + u)Ḃ

−2θia
2(1 + u)Ḃ′ − 12H2

( 1

2kTi
+ λi

)

u(2 + u)B̈

−
(

84H2
( 1

2kTi
+ λi

)

+ 4a2kTi

)

(1 + u)C − 2θia
2(1 + u)C ′

−
(

12H2
( 1

2kTi
+ λi

)

(

u(2 + u) + 4(1 + u)2
)

+ 2a2kTiu(2 + u)
)

Ċ

−6H2
( 1

2kTi
+ λi

)

u(1 + u)(2 + u)C̈ − θia
2u(2 + u)Ċ ′ , (B.41)

– 36 –



Ẽ4
(bb) = −λiH4G̈1 − λiG̈2 + 2kTia

2f̄ + θia
2f̄ ′ + 2λiH

2f + λiH
2(1 + u)ḟ , (B.42)

E
(bb)
5 = 4kTia

2(Ḃ + C) + 2θia
2(Ḃ′ + C ′) +

λi
2

(

H2(1 + u)G̈1 + 2H2Ġ1

)

+ λiḟ . (B.43)

E2, E3 and E5 give the bulk equation for G1: when u 6= 0 or y 6= y′,

∫ u

∞
du′
∫ u′

∞
du′′E2 + 2

∫ u

∞
du′E5 − E3

= H2(2G1 + 4(1 + u)Ġ1 + u(2 + u)G̈1) + 12a′2G1 + 8aa′G1
′ + a2G1

′′ = 0 , (B.44)

and for u = 0 and y = y′,

E2 + 2Ė5 − Ë3 = ¨(B.44)

=
1

8π2M3a2

{( 1

2u
+

1

u2
− 2

u3

)

δ(u) +
(

− 1

u
+

2

u2

)

δ̇(u) − 1

u
δ̈(u)

}

δ(y − y′) . (B.45)

Similarly from E
(bb)
2 , E

(bb)
3 and E

(bb)
5 , we get

∫ u

∞
du′
∫ u′

∞
du′′E(bb)

2 + 2

∫ u

∞
du′E(bb)

5 − E
(bb)
3

=
[

− 2kTia
2G1 +

λiH
2

2
(4(1 + u)Ġ1 + u(2 + u)G̈1) − θia

2G1
′
]

y=yi

= 0 . (B.46)

Note that when performing integrations over u, we set the integration constants to be zero,

because we want our solutions to die off as u gets large. Assuming

G1(u, y, y
′) =

∫

dp
X(x; p)√
x2 − 1

· (1 − z2)2Y (z, z′; p) , (B.47)

with x = 1 + u and z = tanh k(y − y0), (B.44) is written

− 1√
x2 − 1

{

(1 − x2)
d2X

dx2
− 2x

dX

dx
− 1

1 − x2
X
}

· (1 − z2)2Y

+
X√
x2 − 1

· (1 − z2)2
{

(1 − z2)
d2Y

dz2
− 2z

dY

dz
− 4

1 − z2
Y
}

= 0 . (B.48)

The complete orthonormal basis for X is given [56] by

X(x; p) =
Γ(ip − 1/2)

Γ(ip)
P 1
ip−1/2(1 + u) , p > 0 , (B.49)

whose eigenvalue is p2 + 1
4 , i.e.,

(1 − x2)
d2

dx2
X(x; p) − 2x

d

dx
X(x; p) − 1

1 − x2
X(x; p) =

(

p2 +
1

4

)

X(x; p) . (B.50)

Note that these bases satisfy the boundary condition at u → ∞ because P 1
ip−1/2(1 + u) ∼

uip−1/2 for large u. Then for any given p, the solution for Y is

Y (y, y′; p) = A(z′; p)P−2
ip−1/2(z) +B(z′; p)Q2

ip−1/2(z) . (B.51)
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If we put the reference point y′ between y = 0 and y = L, we actually have three copies of

(B.51):

Yi = AiP
−2
ip−1/2(z) +BiQ

2
ip−1/2(z) , y ∈ Ii , (B.52)

where I1 = (0, y′), I2 = (y′, L) and I3 = (−L, 0). Also the correct interpretation of (B.46)

is

{

− kvi
2

(

p2 +
9

4

)

(1 − T 2
i ) + 2kTi

}

Y (yi) −
1

2
{θ+
i Y

′(y+
i ) + θ−i Y

′(y−i )} = 0 , (B.53)

where θ+
i = −1, θ−i = 1 1. Continuity of Y at y = 0, L and y′ gives three equations for

Ai’s and Bi’s:

Y1(0
+) = Y3(0

−) , Y2(L
−) = Y3(−L+) , Y1(y

′−) = Y2(y
′+) . (B.54)

(B.53) gives two more equations:

Y1
′(0+) − Y3

′(0−) + {kv0q(1 − T 2
0 ) + 4kT0}Y1(0) = 0 ,

Y3
′(−L+) − Y2

′(L−) + {kvLq(1 − T 2
L) + 4kTL}Y2(L) = 0 , (B.55)

with q = −p2 − 9/4. The integration of (B.45) over (y′−, y′+) provides the last equation:

∫ ∞

0
dp ∂2

u

( X
√

u(2 + u)

)

· Y ′
∣

∣

∣

y=y′+

y=y′−
=

∫ ∞

0
dp

Γ(ip − 1/2)

Γ(ip)

P 3
ip−1/2(1 + u)

{u(2 + u)}3/2
· Y ′
∣

∣

∣

y=y′+

y=y′−

=
cosh4 ky0

8π2M3

{( 1

2u
+

1

u2
− 2

u3

)

δ(u) +
(

− 1

u
+

2

u2

)

δ̇(u) − 1

u
δ̈(u)

}

. (B.56)

Using,

∣

∣

∣

Γ(ip + 1/2 − µ)

Γ(ip)

∣

∣

∣

2
∫ ∞

1
dxPµip−1/2(x)P

µ
−ip′−1/2(x) = δ(p − p′) , (B.57)

and

Pmν (1 + ǫ) ≈ Γ(ν +m+ 1)

m!Γ(ν −m+ 1)

( ǫ

2

)m/2
, m = 0, 1, 2, · · · , (B.58)

1In [35] θi was introduced to represent the “outward” direction on the branes. That is, when we consider

0 < y < L interval, on the 0-brane “outward” is in the direction of decreasing y (θ+
0 = −1, where + implies

we are on the right side of the brane), whereas on the L-brane we will leave the interval by moving in the

direction of increasing y(θ−

L = +1). Then, if we are in the −L < y < 0 interval, by the same reason we

define θ−

0 ≡ +1 and θ+
−L = θ+

L ≡ −1.
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(B.56) becomes
∫ ∞

0
dp

∫ ∞

0
du

Γ(ip − 1/2)

Γ(ip)
P 3
−ip′−1/2(1 + u)P 3

ip−1/2(1 + u) · Y ′
∣

∣

∣

y=y′+

y=y′−

=
Γ(ip′ − 1/2)

Γ(ip′)

∣

∣

∣

Γ(ip′)
Γ(ip′ − 5/2)

∣

∣

∣

2
{Y ′

2(y
′+; p′) − Y ′

1(y
′−; p′)}

=
cosh4 ky0

8π2M3

[( 1

2u
+

1

u2
− 2

u3

)

{u(2 + u)}3/2P 3
−ip′−1/2(1 + u)

−∂u
{(

− 1

u
+

2

u2

)

{u(2 + u)}3/2P 3
−ip′−1/2(1 + u)

}

+∂2
u

(

− 1

u
{u(2 + u)}3/2P 3

−ip′−1/2(1 + u)
)]

u→0

=
cosh4 ky0

8π2M3

(

− Γ(−ip′ + 7/2)

Γ(−ip′ − 5/2)

)

, (B.59)

or

Y ′
2(y

′+; p′) − Y ′
1(y

′−; p′) =
cosh4 ky0

8π2M3

(

− Γ(−ip′ + 3/2)

Γ(−ip′)
)

. (B.60)

The general solutions for A’s and B’s with arbitrary y and y′ are too lengthy to be written

down. But since we are mainly interested in the gravity on the branes, we set y = y′ = 0,

to get

G1(u, y = y′ = 0) =
1

8π2kM3

∫ ∞

0
dpN (p)

P 1
ip−1/2(1 + u)
√

u(2 + u)
, (B.61)

where

N (p) ≡ −Γ(−ip+ 3/2)

Γ(−ip)
Γ(ip− 1/2)

Γ(ip)
·
bLP

−2
ip−1/2(−T0) − aLQ

2
ip−1/2(−T0)

a0bL − b0aL

= p tanhπp
bLP

−2
ip−1/2(−T0) − aLQ

2
ip−1/2(−T0)

a0bL − b0aL
. (B.62)

ai and bi are given in (2.13) with q and
√

9 + 4q replaced by −p2−9/4 and 2ip respectively.

We can decompose (B.61) into modes by finding the poles of (B.62), i.e.,

a0bL − b0aL = 0 . (B.63)

Once we choose our parameters from the allowed region, all the zeroes of (B.63) occur at

non-negative q.

Let’s perform contour integration to evaluate the integral in (B.61). Using [41] 3.3.1(8),

P 1
ip−1/2(1 + u) =

i

π
coth πp {Q1

ip−1/2(1 + u) −Q1
−ip−1/2(1 + u)} , (B.64)

(B.61) becomes

G1(u, y = y′ = 0) =
1

8π2kM3

i

π

∫ ∞

0
dp p

bLP
−2
ip−1/2(−T0) − aLQ

2
ip−1/2(−T0)

a0bL − b0aL

×
Q1
ip−1/2(1 + u) −Q1

−ip−1/2(1 + u)
√

u(2 + u)
. (B.65)
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With [40] 8.737.4,

Qµ−ν−1(z) =
sinπ(ν + µ)

sinπ(ν − µ)
Qµν (z) −

π cos πν cos πµ

sinπ(ν − µ)
Pµν (z) , (B.66)

we can show
bLP

−2
ip−1/2

(−T0)−aLQ
2
ip−1/2

(−T0)

a0bL−b0aL
is even in p. Then

G1(u, y = y′ = 0)

=
1

8π2kM3

i

π

{

∫ ∞

0
dp p

bLP
−2
ip−1/2(−T0) − aLQ

2
ip−1/2(−T0)

a0bL − b0aL

Q1
ip−1/2(1 + u)
√

u(2 + u)

−
∫ −∞

0
d(−p) (−p)

bLP
−2
ip−1/2(−T0) − aLQ

2
ip−1/2(−T0)

a0bL − b0aL

Q1
ip−1/2(1 + u)
√

u(2 + u)

}

=
1

8π2kM3

i

π

∫ ∞

−∞
dp p

bLP
−2
ip−1/2(−T0) − aLQ

2
ip−1/2(−T0)

a0bL − b0aL

Q1
ip−1/2(1 + u)
√

u(2 + u)
. (B.67)

Since Q1
ip−1/2(1 + u) ∼ e−ipHµ for large p, we close the contour below. Noting that poles

occur at positive q’s, i.e., at pure imaginary p’s, we finally get

G1(u, y = y′ = 0) =
∑

j

G1(u, y = y′ = 0; pj)

=
1

4π2kM3

∑

pj>0

[

p
dp

dq

bLP
−2
ip−1/2(−T0) − aLQ

2
ip−1/2(−T0)

∂q(a0bL − b0aL)
·
Q1
ip−1/2(1 + u)
√

u(2 + u)

]

p=−ipj

= − 1

8π2kM3

∑

pj>0

bLP
−2
pj−1/2(−T0) − aLQ

2
pj−1/2(−T0)

[ ∂q(a0bL − b0aL) ]q=p2j− 9
4

Q1
pj−1/2(1 + u)
√

u(2 + u)
. (B.68)

Next, E2 and E5 give

∫ u

∞
du′E5 −

∫ u

∞
du′
∫ u′

∞
du′′E2

=
2

3
H2u(2 + u)(B̈ − Ċ) + 4H2(1 + u)(Ḃ − C) −

(

4H2 + 24a′2
)

(B −D) − 2a2(B′′ −D′′)

+
a

3a′
H2u(2 + u)(B̈′ − Ċ ′) +

2a

a′
H2(1 + u)(Ḃ′ − C ′) − 16a

a′
a′2(B′ −D′)

+
2

3
H2(2(1 + u)Ġ1 + 7G1) +

a

6a′
H2((1 + u)Ġ1

′
+ 5G1

′) , (B.69)

with D =
∫ u
∞ du′C. Solving it for B −D, we get

B = D −
∑

pj

(1 + u)Ġ1(pj) + 3G1(pj)

2qj
. (B.70)

Among the nine bulk and six brane-boundary equations we started with, we have solved

two bulk and one brane-boundary ones to determine G1 and B − D. Then we eliminate
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G̈1, G
′′
1 and B’s from

∫ ∫

duE2, Ẽ4 and E7 by (B.50) and (B.70), and solve them for A, C

and G2 to get

D =
∑

pj

2G̈1(pj) + 6(1 + u)Ġ1(pj) + (18 + 3qj)G1(pj)

6(2 + qj)qj
, (B.71)

B =
∑

pj

2G̈1(pj) − 3qj(1 + u)Ġ1(pj) − 6qjG1(pj)

6(2 + qj)qj
, (B.72)

Ȧ =
∑

pj

{2H2(−6 + 2(−1 + qj)u+ (11 + qj)u
2 + 12u3 + 3u4)

6(2 + qj)u2(2 + u)2
G1(pj)

+
H2(1 + u)(16 + qju(−4 + 2u+ 4u2 + u3))

2qj(2 + qj)u2(2 + u)2
Ġ1(pj)

}

, (B.73)

G2 = −
∑

pj

2H4

3(2 + qj)2

{

(qj(2 + qj) + 3(4 + qj)(1 + u)2)G1(pj)

+3u(1 + u)(2 + u)Ġ1(pj)
}

. (B.74)

The last job is to verify the redundancy of the remaining four bulk equations and check if

our solution satisfies the remaining five brane-boundary equations. It is easy to check
∫

duE7 − E8 = 0 , (B.75)

upon getting rid of G̈1 and
...
G1. As for E4, we can replace A by Z using (B.36). The

resulting equation has B, C, G1 and Z. Then use E2, E3 and E5 to write Z in terms

of B, C and G1. The last step is to use (B.70) and (B.50), and we will see E4 = 0.

Similarly, we can show that E1 and E6 are redundant. Showing that our solution satisfies

the brane-boundary equations is straightforward, using (B.46) to get the final answer.
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